skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pautet, Pierre‐Dominique"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Medium-scale gravity waves (MSGWs) are atmospheric waves with horizontal scales ranging from 50 to 1000 km that can be observed through airglow all-sky images. This research introduces a novel algorithm that automatically identifies MSGWs using the keogram technique to study the waves over the Antarctic Peninsula. MSGWs were observed with an all-sky airglow imager located at the Brazilian Comandante Ferraz Antarctic Station (CF, 62° S), near the tip of the Antarctic Peninsula. Several preprocessing techniques are necessary to extract the parameters of MSGWs from the airglow images. These include projecting the images into geographical coordinates, applying a flat-field correction, performing consecutive image subtraction, and employing a Butterworth filter to enhance the visibility of the MSGWs. Additionally, a wavelet transform is used to identify the primary oscillations of the MSGWs in the keograms. Subsequently, a wavelet transform is also used to reconstruct the MSGWs and obtain the fitting coefficients of phase lines. The fitting coefficients are then used to calculate the MSGW parameters and assess the quality of the results. Simulations with synthetic images containing typical propagating gravity waves were conducted to evaluate the errors generated during the MSGW calculations and to determine the threshold for the fitting parameters. This methodology processed a year's worth of data in less than 1 h, successfully identifying most waves with errors lower than 5 %. The observed wave parameters are generally consistent with expected results; however, they show differences from other observation sites, exhibiting larger phase speeds and wavelengths. 
    more » « less
  2. Equatorial Plasma Bubbles (EPBs) are a region of depleted ionospheric densities. EPBs are known to fluctuate both seasonally and day to day, and have been linked to changes in solar activity, geomagnetic activity, and seeding resulting from dynamics occurring at lower altitudes. Here, EPB activity is investigated over a 15-day period with overlapping coincident ground-based 630 nm oxygen airglow measurements, near-infrared hydroxyl mesospheric temperature mapper (MTM) measurements, and Rate Of change of Total Electron Content Index (ROTI) values. The data are compared with the Navy Global Environmental Model (NAVGEM) reanalysis over the same time period. It is found that several days with strong EPB activity coincided with the positive/northward meridional wind phase of the quasi-two-day wave (QTDW) in the mesosphere. These initial observations indicate correlations of the QTDW phase and the occurrence rates of EPBs, and suggest a need for further investigations to assess potential causal relationships that may affect the variability and prevalence of EPBs. 
    more » « less
  3. Abstract Mesopause‐region (87 km) gravity waves (GWs) generated by tropical convection are investigated within the four longitude sectors encompassing Africa, the Indian Ocean, the Intertropical Convergence Zone, and South America during the Dec 2023–Feb 2024 Southern Hemisphere monsoon season. Variances () in the OH Q‐line emission measured by the Atmospheric Waves Experiment (AWE) capture GW activity, and precipitation rates (PR) from the Global Precipitation Measurement (GPM) Mission identify regions of convective activity. The zonal component of GWs comprising the between 10S‐10N primarily propagate eastward. The distributions are latitudinally shifted and more confined in local solar time (LST) compared with those of PR. Mesospheric winds (including tides) appear to induce the latitude‐longitude‐LST variability seen in through critical‐level filtering and Doppler‐shifting of the GWs. These new insights into the variability of the GW spectrum entering the ionosphere‐thermosphere system further our understanding of the dynamical connections between tropospheric and space weather. 
    more » « less
    Free, publicly-accessible full text available November 28, 2026
  4. Abstract The National Aeronautics and Space Administration (NASA) Atmospheric Waves Experiment (AWE) instrument, launched in November 2023, provides direct observation of small‐scale (30–300 km) gravity waves (GWs) in the mesosphere on a global scale. This work examined changes in GW activity observed by AWE during two major Sudden Stratospheric Warmings (SSWs) in the 2023 and 2024 winter season. Northern Hemisphere (NH) midlatitude GW activity during these events shared similarities. Variations in mesospheric GW activity showed an evident correlation with the magnitude of zonal wind in the upper stratosphere. NH midlatitude GW activity at 87 km was reduced following the onset of SSWs, likely caused by wind filtering and wave saturation. The upward propagation of GWs was suppressed when the zonal wind reversed from eastward to westward in the upper stratosphere. In regions where the zonal wind weakened but remained eastward, the weakened GWs could be due to their refraction to shorter vertical wavelengths. 
    more » « less
  5. Abstract. In this paper we present an overview of measurements conducted during the WADIS-2 rocket campaign. We investigate the effect of small-scale processes like gravity waves and turbulence on the distribution of atomic oxygen and other species in the mesosphere–lower thermosphere (MLT) region. Our analysis suggests that density fluctuations of atomic oxygen are coupled to fluctuations of other constituents, i.e., plasma and neutrals. Our measurements show that all measured quantities, including winds, densities, and temperatures, reveal signatures of both waves and turbulence. We show observations of gravity wave saturation and breakdown together with simultaneous measurements of generated turbulence. Atomic oxygen inside turbulence layers shows two different spectral behaviors, which might imply a change in its diffusion properties. 
    more » « less
  6. Abstract A remarkable, large‐amplitude, mountain wave (MW) breaking event was observed on the night of 21 June 2014 by ground‐based optical instruments operated on the New Zealand South Island during the Deep Propagating Gravity Wave Experiment (DEEPWAVE). Concurrent measurements of the MW structures, amplitudes, and background environment were made using an Advanced Mesospheric Temperature Mapper, a Rayleigh Lidar, an All‐Sky Imager, and a Fabry‐Perot Interferometer. The MW event was observed primarily in the OH airglow emission layer at an altitude of ~82 km, over an ~2‐hr interval (~10:30–12:30 UT), during strong eastward winds at the OH altitude and above, which weakened with time. The MWs displayed dominant horizontal wavelengths ranging from ~40 to 70 km and temperature perturbation amplitudes as large as ~35 K. The waves were characterized by an unusual, “saw‐tooth” pattern in the larger‐scale temperature field exhibiting narrow cold phases separating much broader warm phases with increasing temperatures toward the east, indicative of strong overturning and instability development. Estimates of the momentum fluxes during this event revealed a distinct periodicity (~25 min) with three well‐defined peaks ranging from ~600 to 800 m2/s2, among the largest ever inferred at these altitudes. These results suggest that MW forcing at small horizontal scales (<100 km) can play large roles in the momentum budget of the mesopause region when forcing and propagation conditions allow them to reach mesospheric altitudes with large amplitudes. A detailed analysis of the instability dynamics accompanying this breaking MW event is presented in a companion paper, Fritts et al. (2019,https://doi.org/10.1029/2019jd030899). 
    more » « less